داد و ستد فارکس در ایران

اعداد فیبوناچی و نسبت طلایی

Applications of Fibonacci Numbers: Volume 4 Proceedings of ‘The Fourth. Peter G. Anderson (auth.) , 1991

عددی که طلایی شد!!

در دنیای ریاضیات دانشمندان برای برخی از اعداد براساس کاربرد و تنوع حضور آن اعداد در علوم مختلف نام‌های مختلفی برگزیده‌اند. یکی اعداد فیبوناچی و نسبت طلایی از زیباترین و جالب‌ترینِ این نامگذاری‌ها عدد طلایی یا نسبت طلایی است!!

عدد طلایی در واقع یک عدد گنگ است و مقدار آن برابر است با

اما چرا آن را طلایی نامیدند؟!! مقدار تقریبی عدد طلایی برابر است با 1.618 و جالب است بدانید که:

  • لئوناردو داوینچی اولین کسی بود که نسبت دقیق استخوان‌های انسان را اندازه‌گیری نمود و ثابت کرد که این نسبت برابر با عدد طلایی اعداد فیبوناچی و نسبت طلایی است.
  • در سنجش تناسب اندام نسبت فاصله انگشتان پا تا ناف به فاصله ناف تا بالای سر یک عدد نزدیک به عدد طلایی است که هر چه نزدیک‌تر باشد، تناسب اندام بیشتر است.
  • در یک چهره‌ی زیبا و ایده‌آل، نسبت فاصله‌ی چشم‌ها تا لب به فاصله‌ی لب تا چانه، و نیز نسبت عرض چشم‌ها و بینی به عرض لب، معادل عدد طلایی است .
  • یکی از دیگر ویژگی‌های جالب عدد طلایی این است که اگر فاصله شهر مکه تا قطب شمال اعداد فیبوناچی و نسبت طلایی را بر فاصله این شهر تا قطب جنوب تقسیم کنیم، عددی بسیار نزدیک به عدد طلایی به دست می‌آید. بنابراین می‌توان گفت شهر مکه در نقطه طلایی زمین واقع شده‌است.
  • ا ز مارپیچ‌های دی‌ان‌ای گرفته تا مارپیچ گوش انسان، حلزون، ساختار مارپیچی کهکشان‌ها و تمام زیبایی‌های طبیعت ازجمله برگ‌های درختان، خطوط و نقش و نگار روی پرهای طاووس و مارپیچ‌های آفتابگردان این نسبت رعایت شده است.

کِپلِر منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه‌ای که در یکی از کتاب‌های خود این‌گونه نوشت:

«هندسه دارای دو گنج بسیار با اهمیت می‌باشد که یکی از آن‌ها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می‌باشد. اولین گنج را می‌توان به طلا و دومی را به جواهر تشبیه کرد».

عدد طلایی را با حرف یونانی φ نمایش می‌دهند. فی ، نخستین حرف از نام «فیدیاس»، پیکرتراش زبده‌ی یونان باستان است که به احتمال زیاد این نسبت عددی را ده‌ها سال پیش از اقلیدس، در شیوه‌ی هنری‌اش لحاظ می‌کرده است.

مصریان، سال‌ها قبل از میلاد از این نسبت آگاه بوده‌اند و آن را در ساخت اهرام مصر رعایت کرده‌اند.

در معماری باستان و معاصر ایران نیز نشانه‌هایی از عدد طلایی دیده می‌شود. از آن جمله می‌توان به برج آزادی تهران، قلعه دالاهو در کرمانشاه، بنای بیستون کرمانشاه، مقبره ابن سینا در همدان، میدان نقش جهان و مسجد لطف‌الله در اصفهان و پل ورسک در مازندران اشاره کرد.

تعبیر هندسی عدد طلایی:

تعبیر هندسی عدد طلایی به این صورت است که اگر روی یک پاره‌خط دو قسمت نابرابر ایجاد می‌کنیم. نسبت کل پاره‌خط به بخش بزرگتر برابر است با نسبت بخش بزرگتر به کوچکتر و این همان عدد طلایی یا نسبت طلایی است.

مستطیل طلایی

مستطیلی است به مساحت واحد که طول آن یک واحد از عرضش بیشتر است. یعنی اگر طول مستطیل را a بنامیم، رابطه زیر بدست می‌آید.

پس می‌توان گفت عدد طلایی عدد مثبتی است که اگر به آن یک واحد اضافه کنیم، مربعش بدست می‌آید.

عدد طلایی در دنباله فیبوناچی:

در دنباله فیبوناچی ( برای آشنایی بیشتر با دنباله فیبوناچی به این مقاله مراجعه کنید.) اگر از عدد 2 به بعد، هر عدد را به عدد قبلی خود تقسیم کنید، مقداری نزدیک به 1.618 بدست می‌آورید که هر چه در دنباله پیش بروید، این عدد به عدد طلایی نزدیکتر خواهد بود.

پارس ناز پورتال

بچه های آسمان

عجایب اعداد فیبوناچی و رابطه آن بازندگی بشر به گزارش پارس ناز : اعداد فیبوناچی در هستی کشف شده اند. در قسمت لاک حلزون از زاویه فی استفاده شده است. شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد.

سری فیبوناچی

اگر به ریاضیات علاقه داشته باشید، حتما با “سری فیبوناچی” آشنا هستید. سری فیبوناچی رشته ‌ای از اعداد است که در آن اعداد غیر از دو عدد اول با محاسبه‌ ی مجموع دو عدد قبلی اعداد فیبوناچی و نسبت طلایی ایجاد می‌شوند.

اولین اعداد سری فیبوناچی عبارت‌اند از:
۰٬ ۱٬ ۱٬ ۲٬ ۳٬ ۵٬ ۸٬ ۱۳٬ ۲۱٬ ۳۴٬ ۵۵٬ ۸۹٬ ۱۴۴٬ ۲۳۳٬ ۳۷۷٬ ۶۱۰٬ ۹۸۷٬ ۱۵۹۷٬ ۲۵۸۴٬ ۴۱۸۱
“عدد فی” از دنباله ی فیبوناچی مشتق شده است، تصاعد مشهوری که شهرتش تنها به این دلیل نیست که هرجمله با مجموع دو جمله ی پیشین خود برابری می کند. بلکه به این دلیل است که خارج قسمت هر دو جمله ی کنار هم خاصیت حیرت انگیزی نزدیک به عدد 1.618 را دارد که به “نسبت طلایی” مشهور است.

این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شده‌است. وی نخستین ریاضیدان بزرگ اروپا در قرن سیزدهم است که بیشتر فعالیت هایش از آثار ریاضیدان‌های مسلمان به خصوص خوارزمی، کرجی و ابوکامل تأثیر پذیرفته است.در دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود در یکی از همین مسابقات که در سال ۱۲۲۵ در شهر پیزا توسط امپراتور فردریک دوم برگزار شده بود مسئله زیر مطرح شد:

«فرض کنیم خرگوش‌هایی وجود دارند که هر جفت (یک نر و یک ماده) از آنها که به سن ۱ ماهگی رسیده باشند به ازاء هر ماه که از زندگی‌شان سپری شود یک جفت خرگوش متولد می‌کنند که آنها هم از همین قاعده پیروی می‌کنند حال اگر فرض کنیم این خرگوشها هرگز نمی‌میرند و در آغاز یک جفت از این نوع خرگوش در اختیار داشته باشیم که به تازگی متولد شده‌اند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت.»

حال اگر تعداد خرگوش ها را در ماههاي اول و دوم و … حساب كنيم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است.

۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,…

فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفت‌انگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضی‌دانان بلکه دانشمندان بسیاری از رشته‌های دیگر را به خود جلب کرده است.

عجایب اعداد فیبوناچی و رابطه آن بازندگی بشر

در قسمت لاک حلزون از زاویه فی استفاده شده است

اعداد فیبوناچی در قالب طبیعت

با وجود گستردگی طبیعت و وجود انواع موجودات پیرامون انسان‌ها، نظم خاصی بر همه چیز حاکم است که با پیشرفت علوم بشری، این نظم بیش از پیش مشخص‌تر می‌شود. شاید در زمان یادگیری برخی از مفاهیم علمی، بسیاری از موارد بی معنی به نظر برسد، اما نظم خاصی در پشت همه چیز نهفته است. ریاضیات یکی از علوم پایه است که کشف اسرار آن، کلید حل معمای موجود در طبیعت است.

اعداد فیبوناچی در هستی کشف شده اند. در قسمت لاک حلزون از زاویه فی استفاده شده است. شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد. درختان اعداد فیبوناچی و نسبت طلایی با پیروی از این نوع الگوی رشد، قادرند درصد بیشتری از نور خورشید را جذب کنند.

عجایب اعداد فیبوناچی و رابطه آن بازندگی بشر

نسبت طلایی (1.618) در ساختار آفتابگردان نیز بکار رفته است

دانه اعداد فیبوناچی و نسبت طلایی های آفتابگردان به شکل مارپیچ هایی روبروی هم رشد می کنند. طبق تحقیقات انجام شده نسبت قطر هر مارپیچ به مارپیچ بعدی 1.618 است. حتی در ساختار شکل گوش ما هم از این اعداد تبعیت شده است.

نسبت طلایی (1.618) در آناتومی بدن انسان نیز بکار رفته است. اگر قد خود را بر فاصله عمودی ناف تا نوک انگشتان خود تقسیم کنید، تقریبا عدد 1.618 را بدست می‌آورید. با تقسیم طول بازوی خود از نوک انگشت بزرگ تا بالای شانه، بر فاصله نوک انگشت بزرگ تا آرنج خود نیز به این نسبت می‌رسید. از آنجایی که این نسبت در بسیاری از اندازه‌های بدن انسان وجود دارد، از آن به نام نسبت الهی نیز یاد می‌شود.

علاوه بر طبیعت، از زمان باستان بسیاری از هنرمندان و معماران نیز از رابطه‌های ریاضی و هندسی در آثار خود استفاده می‌کردند. برای مثال می‌توان به آثار تاریخی باقی مانده از دوران مصر باستان، یونان و رم اشاره کرد. مثلا معبد معروف پارتنون بهترین مثال از کاربرد اعداد فیبوناچی و نسبت طلایی نسبت طلایی (1.618) است. نسبت عرض به طول پنجره‌های مستطیل شکل معبد همگی برابر نسبت طلایی است. در اهرام مصر نیز این نسبت بخوبی رعایت شده است. طول هر ضلع قاعده هرکدام از اهرام به ارتفاع آن، معادل نسبت طلایی می‌باشد.

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

همچنین تماشا کنید
نزدیک
برو به دکمه بالا